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INTRODUCTION AND BACKGROUND 

As part of a Department of Defense global program, the Navy has initiated efforts to develop 
benign, cost effective, environmentally friendly processes for the remediation of facilities contaminated 
with hazardous energetic materials. One process particularly appropriate for the Naval Air Warfare Center 
Weapons Division, China Lake, California, is the exploitation of photochemical degradation for the 
decomposition of the ubiquitous energetic nitramines cyclotrimethylenetrinitramine (RDX) and 
cyclotetramethylenetetranitramine (HMX) used in research and development programs involving 
numerous ordnance items. 

Research, development, and production facilities for nitramine-containing explosives and 
propellant systems have inevitably resulted in areas contaminated with nitramine residue. These areas 
must be cleaned and decontaminated before a change in their use can be undertaken. Because it is Navy 
policy to manage its land holdings in a clean, safe, and environmentally friendly manner, a program was 
undertaken to determine the effectiveness and efficiency of photodecomposing nitramine-contaminated 

soil. 

The effort was based on the assumption that the high-intensity solar irradiation available to 
government installations in the Southwestern United States could provide an economic and effective way 
to destroy these unwanted contaminants. It was further assumed that the process would afford benign 
photochemical decomposition by-products that would not adversely impact the fragile desert environment. 

The photochemical decomposition of nitramine compounds has been examined by a number of 
researchers (References 1-5). All of these investigations were carried out in aqueous solutions. The 
addition of catalysts or rate accelerators was also explored. The principal objective of these earlier studies 
centered on the development of an aqueous process for the remediation of nitramine-contaminated lagoons 
and/or waste streams. Although both catalyzed and uncatalyzed processes were completely effective, the 
concentration of dissolved nitramine in the water (approximately 100 ppm for RDX and 10 ppm for HMX) 
precluded these methods from being commercially attractive. On the other hand, the potential for the 
solid-state photodecomposition of nitramines has not been explored. Examination of the literature 
revealed that only low-temperature, high-energy irradiation of the nitramines has been studied. The lack 
of available literature data, coupled with the potential for economic, effective, and efficient remediation of 
large nitramine-contaminated areas, were excellent drivers for the current investigation. 

Before embarking on a demonstration program directed toward defining the efficiency of a solar 
photochemical decomposition effort for energetic nitramines, two fundamental technology questions must 
be answered. First, is the solid-state photochemical decomposition rate for RDX and HMX by direct 
sunlight sufficiently robust to afford an efficient process? Second, are the final photodecomposition 
products of these energetic nitramines environmentally benign? Our preliminary findings, which are 
detailed in this report, clearly indicated that both energetic nitramines (RDX and HMX) are effectively and 
efficiently destroyed in the solid state by either a medium-pressure mercury (Hg) lamp ultraviolet light 
source or solar irradiation, and that the residual photolysis by-products do not appear to be a major 
concern. The study reported herein defines the photolysis conditions used and the results obtained for the 
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solid-state photodecomposition of energetic nitramines (RDX and HMX). In addition, we have indicated 
areas that require additional investigation before we can develop an appropriate test protocol for 
photochemical remediation of nitramine-contaminated sites. 

RESULTS AND DISCUSSION 

FTTR CALIBRATION OF THE WEIGHT 
PERCENT OF RDX AND HMX 

The first program objective was to establish a Fourier transform infrared (FTTR) method to 
measure the weight percent of RDX and HMX in a transparent matrix to quantitatively monitor their 
photochemical degradation. To accomplish this task, a series of potassium bromide (KBr) pellets 
containing between 0.5 to 5% nitramine in a total weight of 150.0 ±0.5 mg were prepared. The pellets 
were pressed under vacuum at 40,000 psi for 2 minutes affording clear, colorless glasses of constant 
thickness or path length. These pellets were then scanned using a Nicolet 710 FUR spectrometer at 4 cm"1 

resolution with a deuterated triglycine sulfate (DTGS) uncooled detector and a 450 cm'1 cut-off. 

Initially, the absorption region between 3050 and 2950 cm"1 was used to measure the 
decomposition rates. However, after prolonged medium-pressure Hg lamp or solar exposure, scattering 
decreased the transmittance in this region to less than 5%. To overcome the effect of high-frequency 
scattering, we used weak bands in the low frequency region (590 and 754 cm-1 for RDX and 658 and 830 
cm'1 for HMX). Figures 1-3 show plots of the peak heights at the above frequencies with the baseline 
limits shown in parentheses versus the wt% of nitramine. The HMX data are fit to a straight line for the 
2.5-5.5 wt% region (Figure 1) and to a second-order polynomial for the 0-2.5 wt% region (Figure 2). 
Based on spectral clarity and isolation, the 658 cm"1 peak is used for HMX. The equations for determining 

the HMX wt% are as follows: 

HMX (wt%) = 4.355(p658) - 0.248 
for 2.5 - 5.5 wt% (1) 

HMX (wt%) = 4.55(p658)2 + 1.334(p658) - 0.0056 
for 0 - 2.5 wt% (2) 

where p658 is the peak height at 658 cm"1 with baseline limits of 677-640 cm"1. The linear correlation 
coefficient (R2) value of 0.9669 for both fits is reasonable, considering the non-Beers Law behavior of the 
data. Figure 3 shows the calibration curves for the RDX data which are fit to a second-order polynomial 
for the entire 0-5 wt% range. The 590 cm"1 RDX peak is used to determine the RDX wt% and the 

equation is shown below. 

RDX (wt%) = 1.824(p590)2 + 1.848(p590) + 0.0521 (3) 

where p590 is the peak height at 590 cm"1 with baseline limits of 640-530 cm"1. The R2 value is 0.9858 for 

the curve fit. 
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FIGURE 3. RDX FTIR Calibration (0 - 5 wt%). 

Hg LAMP IRRADIATION OF RDX AND HMX 
SUSPENDED IN KBr PELLETS 

Two sets of RDX and HMX pellets (described above) with concentrations varying between 0.5 
and 5.0 wt% nitramine were exposed to an unfiltered medium-pressure Hg lamp. The disappearance of the 
RDX and HMX was monitored as a function of time using the FTIR wt% calibrations just discussed. An 
exponential decay rate expression (Equation 4) gives an excellent fit to most of the photodecomposition 
data. However, at high HMX wt% (> 3 wt%), the decay is almost linear. 

wt% (nitramine) = a e"(bt) (4) 

The pre-exponential factor "a" is the wt% intercept (t = 0), where "t" is the irradiation time in hours and 
"b" is the exponential slope. The exponential rate expression does not indicate an overall mechanism but 
is used to compare all the data on an equal basis using the exponential slopes and the wt% intercepts. In 
general, excellent agreement was observed for the duplicate samples. Representative examples of RDX 
and HMX Hg lamp photodecompositions at 1 and 5 wt% are shown in Figures 4 and 5, respectively. 
Table 1 lists the measured concentration in wt%, the wt% intercept, the exponential slope, and the 
calculated half-life for all the RDX and HMX samples exposed to the Hg lamp. A plot of the exponential 
photolysis rates (b) versus the wt% intercepts (a) for both RDX and HMX is shown in Figure 6. The RDX 
and HMX photodecomposition rate is faster at lower wt% or concentration, but the rate decreases and 
starts to "level off' at higher wt% (Table 1 and Figure 6). Moreover, the photodecomposition rate of RDX 
is significantly faster than that of HMX at higher concentrations, but the rates are closer at low wt%. 
Figure 7 shows a plot of the exponential half-life in hours versus the wt% intercept for all the RDX and 
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HMX samples exposed to the Hg lamp. The half-life data show that, for the initial half of the photolysis, 
both RDX and HMX have about the same half-life at low wt% (0.5-1.0 wt%), but, as the wt% increases, 
HMX takes progressively longer to photodecompose than RDX (Figure 7). It is clear that the Hg lamp 
photodecomposition rate of both RDX and HMX in KBr pellets increases with decreasing concentration 
or, more exactly, optical density (optical density = concentration x path length). Since the KBr pellets 
were made under the same experimental conditions and have the same total weight of KBr, their thickness 
or path length is nearly constant. The constant path length is confirmed from the good fit of the calibration 
data in Figures 1-3. 
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it • • HMXln3 

■ -•• RDXlnl 

♦"- RDXln2 

-O- 
80 90 100 

Time (hrs) 

FIGURE 4. Comparison of HMX and RDX Photolysis with Hg Lamp (1 wt%). 
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FIGURE 5. Comparison of HMX and RDX Photolysis with Hg Lamp (5 wt%). 

TABLE 1. Medium-Pressure Hg Lamp Photochemical Decomposition 
Rate Expression for Various RDX and HMX Concentrations. 

RDX Sample # Nominal [RDX], 
% 

Exponential "a" 
Term 

Exponential "b" 
Term 

R2 Half-life, hrs 

2 0.5 0.49 0.081 0.9958 8.6 

3 0.5 0.47 0.079 0.9960 8.8 

4 1.0 0.89 0.062 0.9989 11.2 

5 1.0 0.84 0.055 0.9982 12.6 

6 2.0 2.09 0.036 0.9987 19.5 

7 2.0 2.35 0.037 0.9993 18.7 

8 3.1 3.54 0.035 0.9994 20.0 

9 3.8 3.71 0.027 0.9973 25.6 

10 3.8 3.61 0.032 0.9967 22.0 

11 4.8 5.03 0.020 0.9941 34.7 

12 4.8 4.43 0.020 0.9936 34.7 
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TABLE 1. Continued). 

HMX Sample # Nominal [HMX], Exponential "a" Exponential "b" R2 Half-life, hrs 
% Term Term 

2 0.5 0.52 0.061 0.9982 11.4 

3 0.5 0.49 0.090 0.9881 7.7 

4 1.0 1.07 0.046 0.9948 15.1 

5 1.0 1.20 0.058 0.9947 12.0 

6 2.2 2.63 0.019 0.9703 37.3 

7 2.2 1.99 0.025 0.9866 28.1 

8 3.0 3.34 0.016 0.9699 44.7 

9 3.0 4.06 0.014 0.9874 51.3 

10 4.1 3.62 0.008 0.9458 82.5 

11 4.9 4.66 0.007 0.9867 105.0 

12 5.3 4.54 0.008 0.9892 90.0 
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FIGURE 6. Comparison of HMX and RDX Exponential Rates for Hg Lamp Irradiation. 
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SOLAR IRRADIATION OF RDX 
AND HMX IN KBr PELLETS 

Another set of RDX and HMX pellets (prepared as described above) at the same concentrations 
was exposed to quartz-filtered solar irradiation. Representative examples of RDX and HMX solar 
photodecompositions at 1 and 5 wt% are shown in Figures 8 and 9, respectively. Again, both RDX and 
HMX samples degraded with time. However, the rate of photochemical degradation is significantly slower 
for the solar-irradiated materials as compared to the Hg-lamp-irradiated samples. Whereas the duration for 
the Hg lamp experiments was measured in hours, the duration of the solar experiments was measured in 
weeks. The disappearance of nitramine was again fit to an exponential decay equation (Equation 4). 
Table 2 lists the measured concentration of RDX and HMX, the wt% intercept, the exponential slope, and 
the calculated half-life (in weeks) at each concentration. The RDX solar photodecomposition rate is faster 
than that observed for HMX at the higher concentrations, but about equal at the lower concentrations 
(Table 2). As in the Hg lamp photolysis, the sun-irradiated explosive decomposition rate increased at the 
lower concentrations or lower optical densities. Figure 10 is a plot of the half-life for sun-irradiated RDX 
and HMX versus the wt% intercept (data from Table 2). Note the similarity between Figure 7 (Hg lamp 
irradiation) and Figure 10 (sun irradiation), except for the much longer half-lives for sun irradiation. 

10 
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TABLE 2. Solar Photochemical Decomposition Rate Expressions 
for Various RDX and HMX Concentrations. 

RDX Sample # Nominal [RDX], 
% 

Exponential "a" 
Term 

Exponential "b" 
Term 

R2 Half-life, wks 

1 0.5 0.48 0.615 0.9721 1.10 

2 1.0 0.88 0.740 0.9966 0.93 

3 2.0 2.08 0.459 0.9917 1.50 

4 3.1 3.30 0.427 0.9942 1.60 

5 3.8 3.88 0.384 0.9840 1.80 

6 4.8 4.25 0.341 0.9880 2.00 

HMX Sample # Nominal [HMX], 
% 

Exponential "a" 
Term 

Exponential "b" 
Term 

R2 Half-life, wks 

1 0.5 0.50 0.657 0.9981 1.0 

2 1.0 1.13 0.571 0.9964 1.2 

3 2.0 1.89 0.320 0.9816 2.2 

4 3.0 3.89 0.216 0.9647 3.2 

5 4.1 3.53 0.180 0.9520 3.8 

6 4.9 5.26 0.164 0.9619 4.2 

7 5.3 5.21 0.127 0.9790 5.5 

-a: 4 

a 
•S3 

S 

-•     RDX Half-life 

■■"••    HMX Half-life 

0 12 3 4 5 
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FIGURE 10. Comparison of HMX and RDX Half-lives for Sun Irradiation. 
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Although numerous differences existed between the Hg lamp and solar photodecomposition 
experiments (such as humidity, length of exposure, filter, intensity of light, and temperature), the relative 
rate behavior for HMX and RDX decomposition appeared quite consistent. Figures 11 and 12 show 
comparisons of KMX and RDX at 1 wt% for Hg lamp versus solar photodecomposition with the solar 
exposure time-scale converted to actual hours of irradiation. The slower photolysis rate for sun irradiation 
compared to Hg lamp irradiation indicates a lower intensity of light in the region of HMX and RDX 
absorption (below about 300 nm). However, given enough time, even HMX at 5 wt% will completely 
photodecompose under sun irradiation. 

A series of uncalibrated KBr pellets containing RDX and HMX was prepared and exposed for ten 
weeks to sun irradiation. For this series, the pellet sample size ranged from 400 to 600 mg of KBr 
containing from 1.0 to 5.0% nitramine. The pellets were pressed at 40,000 psi for one minute. No vacuum 
was used during pressing operations. These pellets were then scanned with a Digilab FTIR spectrometer at 
4 cm"1 resolution using a DTGS detector. The resulting pellets had variable path lengths, and peak heights 
were not calibrated to wt% of explosive. These pellets were used to obtain relative rate data by monitoring 
the absorbances at the same frequencies used for the calibrated KBr pellets (658 cnr1 for HMX and 590 
cm-1 for RDX) versus sun exposure time in weeks, and then fitting the data to the exponential decay 
equation (Equation 4). Table 3 lists the measured initial concentration in wt%, the absorbance intercept 
(a), the exponential slope (b), the half-life in weeks, and the ratio of the calibrated exponential "b" term 
(Table 2) to the corresponding uncalibrated "b" term (at about the same wt%) for all the uncalibrated HMX 
and RDX sun-exposed samples. The RDX exponential rates show the decrease in rate with increase in 
concentration (Table 3) observed for the calibrated constant path length data (Table 2), but the HMX data 
are inconsistent (Table 3) due to the change in path length. Figures 13-16 show selected plots of the 
calibrated and uncalibrated sun-irradiated photolysis of HMX and RDX, where the initial uncalibrated 
absorbance is matched with the initial wt% of the calibrated data. The 4 wt% HMX example in Figure 13 
shows an excellent match of the photolysis rates for the first 5 weeks, and indeed the ratio of the 
calibrated-to-uncalibrated rate (b(calibrated)/b(uncalibrated)) is 0.96 (Table 3). Figure 14 shows the HMX 
5 wt% case where the calibrated rate is faster than the uncalibrated rate and b(calibrated)/b(uncalibrated) is 
1.7 (Table 3). Figures 15 and 16 show examples for RDX sun-irradiated photolysis where the rates match 
for 2 wt% [b(calibrated)/b(uncalibrated) = 1.1, Table 3 and Figure 15] and is much faster for 5 wt% 
[b(calibrated)/b(uncalibrated) = 2.4, Table 3 and Figure 16]. The calibrated and uncalibrated KBr pellets 
were sun irradiated under identical conditions; therefore, for the samples of equal concentration, the 
difference in rates must be due to a change in path length or inefficient photolysis of large nitramine 

particles that did not dissolve in the KBr. 

EFFECT OF FILTERS ON THE DECOMPOSITION 
RATES FOR RDX AND HMX KBr PELLETS 

In another set of experiments, a series of uncalibrated KBr pellets containing 1.0% nitramine were 
exposed to directed sun irradiation. The samples were placed under quartz, Plexiglas, and glass to 
determine the effect of wavelength on the rates of nitramine degradation. As shown in Figures 17 and 18 
for RDX and HMX, respectively, the photodecomposition rates decrease as the intensity in the lower 
wavelength region (RDX and HMX absorb below about 300 nm) is decreased. Thus, a quartz filter (which 
allows transmission of wavelengths down to about 200 nm) was significantly better than glass, which, in 
turn, was better than Plexiglas. Clearly no external filters should be used to ensure effective and efficient 
decomposition of RDX and HMX.  The use of unfiltered, natural sunlight to effectively and efficiently 

13 
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decompose these ubiquitous energetic nitramines is the most cost effective and environmentally benign 
method available to the explosive community and should require only a modest facility investment. 

 •     HMX-Hg Lamp 

—±—    HMX-Hg Lamp 

— ■—    HMX-Sun 

"■■ 

300 400 200 

Time (hrs) 

FIGURE 11. Comparison of Hg Lamp and Sun Irradiation for HMX in KBr (1 wt%). 
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FIGURE 12. Comparison of Hg Lamp and Sun Irradiation for RDX in KBr (1 wt%). 
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TABLE 3. Solar Photochemical Decomposition Rate Data 
For Uncalibrated RDX and HMX Samples. 

Measured RDX 
wt% 

Exponential "a" 
Term 

Exponential "b" 
Term 

Half-life, wks Calibrated RDX (b) / 
Uncalibrated RDX (b) 

1 0.25 0.44 1.6 1.70 

2 0.50 0.41 1.7 1.10 

3 0.48 0.29 2.4 1.50 

4 0.69 0.22 3.2 1.70 

5 0.82 0.14 5.0 2.40 

Measured HMX 
wt% 

Exponential "a" 
Term 

Exponential "b" 
Term 

Half-life, wks Calibrated HMX (b) / 
Uncalibrated HMX (b) 

1 0.29 0.11 6.3 5.20 

2 0.60 0.18 3.9 1.80 

3 0.76 0.15 4.6 1.30 

4 0.97 0.23 3.0 0.96 

5 1.43 0.08 8.4 1.70 
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FIGURE 13. Calibrated vs. Uncalibrated HMX Sun Exposure (4 wt%). 
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FIGURE 14. Calibrated vs. Uncalibrated HMX Solar Exposure (5 wt%). 
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FIGURE 15. Calibrated vs. Uncalibrated RDX Solar Exposure (2 wt%). 
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FIGURE 16. Calibrated vs. Uncalibrated RDX Solar Exposure (5 wt%) 
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FIGURE 17. Uncalibrated RDX Solar Exposure Under Wavelength Filters (1 wt%). 

17 



NAWCWPNS TP 8271 

0.5 

£ u 
oe 
i« 

V u s 
R 

U 
O 

<: 
x 

0.4   " 

0.3   ' 

0.2   " 

0.1   " 

0.0 

• 1 % HMX under quartz 

• ± • • • •     1 % HMX under Plexiglas 

••      1% HMX under glass 

_L _L 

4 5 6 7 

Sun Exposure (Weeks) 

10 

FIGURE 18. Uncalibrated HMX Solar Exposure Under Wavelength Filters (1 wt%). 

PRELIMINARY PRODUCTS ANALYSIS OF THE HMX 
AND RDX PHOTODECOMPOSITTON IN KBr 

FTIR spectra of the final photolysis products of HMX and RDX in KBr and the dichloromethane 
(DCM) extract of completely photolyzed HMX are shown in Figure 19. Preliminary FTIR analysis of the 
solid-phase products, after complete disappearance of the nitramine, show the presence of a nitrate salt 
(KNO3) and an alkyl formamide or mixture of formamides (bottom spectrum in Figure 19). 
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FIGURE 19. FTIR Spectra of RDX and HMX Photolysis Products. 
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CONCLUSIONS 
AND RECOMMENDATIONS 

RDX and HMX photodecompose in the solid state (dispersed in KBr) at a reasonable rate under 
both medium-pressure Hg lamp or sun irradiation. The photolysis rate for RDX is faster than for HMX at 
high concentrations (>2 wt%) and about the same for concentrations below 2 wt%. Both RDX and HMX, 
dispersed in KBr, photodecompose at an exponential rate that depends upon concentration, path length, 
wavelength of light, and intensity of light. However, preliminary data show that the rate is also particle- 
size dependent. Preliminary photolysis products are KNO3 and alkyl formamides. 

Further work is required to determine the photolysis rate in non-dispersed systems, such as neat 
nitramine and nitramine in sand and soil. The influence of nitramine particle size on the photolysis rate 
must be determined to calculate actual solar efficiencies. More detailed analysis of the photolysis products 
and mechanism is required. Finally, a field demonstration of the photodecomposition of RDX and HMX 
must be conducted to further validate our experimental model. 
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